Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668516

RESUMO

While microglia have been established as critical mediators of synaptic plasticity, the molecular signals underlying this process are still being uncovered. Increasing evidence suggests that microglia utilize these signals in a temporally and regionally heterogeneous manner. Subsequently, it is necessary to understand the conditions under which different molecular signals are employed by microglia to mediate the physiological process of synaptic remodeling in development and adulthood. While the microglial purinergic receptor P2Y12 is required for ocular dominance plasticity, an adolescent form of experience-dependent plasticity, it remains unknown whether P2Y12 functions in other forms of plasticity at different developmental time points or in different brain regions. Using a combination of ex vivo characterization and behavioral testing, we examined how the loss of P2Y12 affects developmental processes and behavioral performance in adulthood in mice. We found P2Y12 was not required for an early form of plasticity in the developing visual thalamus and did not affect microglial migration into barrels in the developing somatosensory cortex. In adult mice, however, the loss of P2Y12 resulted in alterations in recognition and social memory, as well as anxiety-like behaviors, suggesting that while P2Y12 is not a universal regulator of synaptic plasticity, the loss of P2Y12 is sufficient to cause functional defects.


Assuntos
Ansiedade/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Plasticidade Neuronal , Receptores Purinérgicos P2Y12/deficiência , Sinapses/metabolismo , Animais , Ansiedade/genética , Ansiedade/patologia , Encéfalo/patologia , Memória , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2Y12/metabolismo , Sinapses/genética , Sinapses/patologia
2.
J Am Soc Nephrol ; 32(3): 553-562, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33514560

RESUMO

BACKGROUND: Damage to the renal microvasculature is a hallmark of renal ischemia-reperfusion injury (IRI)-mediated AKI. The miR-17∼92 miRNA cluster (encoding miR-17, -18a, -19a, -20a, -19b-1, and -92a-1) regulates angiogenesis in multiple settings, but no definitive role in renal endothelium during AKI pathogenesis has been established. METHODS: Antibodies bound to magnetic beads were utilized to selectively enrich for renal endothelial cells from mice. Endothelial-specific miR-17∼92 knockout (miR-17∼92endo-/- ) mice were generated and given renal IRI. Mice were monitored for the development of AKI using serum chemistries and histology and for renal blood flow using magnetic resonance imaging (MRI) and laser Doppler imaging. Mice were treated with miRNA mimics during renal IRI, and therapeutic efficacies were evaluated. RESULTS: miR-17, -18a, -20a, -19b, and pri-miR-17∼92 are dynamically regulated in renal endothelial cells after renal IRI. miR-17∼92endo-/- exacerbates renal IRI in male and female mice. Specifically, miR-17∼92endo-/- promotes renal tubular injury, reduces renal blood flow, promotes microvascular rarefaction, increases renal oxidative stress, and promotes macrophage infiltration to injured kidneys. The potent antiangiogenic factor thrombospondin 1 (TSP1) is highly expressed in renal endothelium in miR-17∼92endo-/- after renal IRI and is a target of miR-18a and miR-19a/b. miR-17∼92 is critical in the angiogenic response after renal IRI, which treatment with miR-18a and miR-19b mimics can mitigate. CONCLUSIONS: These data suggest that endothelial-derived miR-17∼92 stimulates a reparative response in damaged renal vasculature during renal IRI by regulating angiogenic pathways.


Assuntos
Rim/irrigação sanguínea , Rim/lesões , MicroRNAs/genética , Neovascularização Fisiológica/genética , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/agonistas , MicroRNAs/metabolismo , Mimetismo Molecular , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...